EDITORIAL
855 Translational Careers
N. Andrews et al.

NEWS OF THE WEEK
864 Stimulus Spending Looms Large as Obama Charts a Course for Science
>> Science Podcast
864 Navigating Treacherous Waters
867 Stimulus Funding Elicits a Tidal Wave of ‘Challenge Grants’
867 From the Science Policy Blog
868 Newsmaker Interview: Texas Transplant Alfred Gilman Guides $3 Billion Cancer Project
869 Austria’s Possible CERN Withdrawal Rattles Physicists
869 From Science’s Online Daily News Site
870 Flu Researchers Train Sights on Novel Tricks of Novel H1N1
871 Swine Flu Names Evolving Faster Than Swine Flu Itself

NEWS FOCUS
872 ‘Vengeance’ Bites Back at Jared Diamond
875 Carbon Sheets an Atom Thick Give Rise to Graphene Dreams
Relativistic Physics in the Lab
878 Two Missions Go in Search of A Watery Lunar Bonanza

LETTERS
880 Politics Still in Play
L. S. Thompson
Invest in Postdocs
K. G. Hoff
Mining the Data on Coal
M. Lardelli
Conference Covered Climate from All Angles
M. Hulme et al.

BOOKS ET AL.
883 Animal Spirits
G. A. Akerlof and R. J. Shiller,
reviewed by M. Baddeley
884 Browsings

POLICY FORUM
885 The Cholera Crisis in Africa
S. Bhattacharya et al.

PERSPECTIVES
886 Seasons and Life Cycles
H. Steltzer and E. Post
>> Perspective p. 887
887 Phenology Feedbacks on Climate Change
J. Peñuelas et al.
>> Perspective p. 886
888 Ice Sheet Stability and Sea Level
E. R. Ivins
>> Research Article p. 901
890 Ovulation Signals
R. Duggavathi and B. D. Murphy
>> Report p. 938
891 Photovoltaics Power Up
R. M. Swanson
892 Two Beams Squeeze Feature Sizes in Optical Lithography
J. W. Perry
>> Reports pp. 910, 913, and 917
893 Crossing the Line
T. Kidd
>> Report p. 944

REVIEW
895 The Tail of Integrins, Talin, and Kindlins
M. Moser et al.

CONTENTS continued >>

COVER
Shaded perspective view of a surface topography of the West Antarctic Ice Sheet looking toward the Filchner-Ronne Ice Shelf and Antarctic Peninsula at the upper left. Floating ice shelves at the surface are in gray; the grounded ice sheet is shaded green to blue with increasing elevation. The topography was used to determine the volume of ice above sea level, as described on page 901.

Image: David Vaughan, British Antarctic Survey

DEPARTMENTS
851 This Week in Science
857 Editors’ Choice
860 Science Staff
863 Random Samples
959 New Products
960 Science Careers
BREVIA

900 A Key Role for Similarity in Vicarious Reward
D. Mobbs et al.
A functional magnetic resonance imaging study reveals the interactions within the brain that modulate feelings of reward on seeing a similar person win a contest.
>> Science Podcast

RESEARCH ARTICLES

901 Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet
J. L. Bamber et al.
A collapse of the West Antarctic Ice Sheet would raise global sea level by 3.2 meters, but with large regional variations.
>> Perspective p. 888; Science Podcast

904 Input-Specific Spine Entry of Soma-Derived Vesl-1S Protein Conforms to Synaptic Tagging
D. Okada et al.
The protein Vesl-1S fulfills the synaptic tagging hypothesis for the maintenance of input-specific action of neuronal networks.

REPORTS

910 Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization
L. Li et al.
Polymerization activated by a pulsed light beam was halted by a continuous beam of the same color in a surrounding halo.
>> Perspective p. 892

913 Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography
T. F. Scott et al.
Polymerization activated by a beam of light was halted by inhibitors generated by a surrounding halo of a different color.
>> Perspective p. 892

917 Confining Light to Deep Subwavelength Dimensions to Enable Optical Nanopatterning
T. L. Andrew et al.
Molecules that photoisomerize and change in transparency are used to define narrow features on photoresists.
>> Perspective p. 892

921 Size and Shape of Saturn’s Moon Titan
H. A. Zebker et al.
Titan’s poles lie at lower elevations than the equator, perhaps explaining its high-latitude hydrocarbon lakes.

924 Observing the Quantization of Zero Mass Carriers in Graphene
D. L. Miller et al.
Scanning tunneling microscopy on graphene reveals non-equally spaced Landau energy levels induced by a magnetic field.

927 Direct Detection of Abortive RNA Transcripts in Vivo
S. R. Goldman et al.
RNA polymerase engages in abortive transcription in bacteria, a process that may help to regulate gene expression.

929 The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain
S. Kriaucionis and N. Heintz
The genome of mammals contains appreciable amounts of a previously undescribed modified DNA base.

930 Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1
M. Tahiliani et al.
Methylated C bases, an important epigenetic mark in genomic DNA, can be enzymically converted to 5-hydroxymethylcytosine.

935 A Functional Role for Transposases in a Large Eukaryotic Genome
M. Nowacki et al.
The ciliate Oxytricha uses transposase genes to influence thousands of DNA rearrangements required for proper development.

938 MAPK3/1 (ERK1/2) in Ovarian Granulosa Cells Are Essential for Female Fertility
H.-Y. Fan et al.
Targeted disruption of the kinases derails the molecular events that mediate induction of female reproductive development.
>> Perspective p. 890

941 Cell Movements at Hensen’s Node Establish Left/Right Asymmetric Gene Expression in the Chick
J. Gros et al.
Asymmetric gene expression is passively set up in the early chick embryo by cell rearrangements.

944 A Frazzled/DCC-Dependent Transcriptional Switch Regulates Midline Axon Guidance
L. Yang et al.
A single receptor in Drosophila is involved in two molecular strategies that coordinate axon guidance.
>> Perspective p. 893

948 Fictive Reward Signals in the Anterior Cingulate Cortex
B. Y. Hayden et al.
Single neurons in the monkey cingulate cortex respond to fictive and experienced outcomes in the same way.

951 Extinction-Reconsolidation Boundaries: Key to Persistent Attenuation of Fear Memories
M.-H. Monfils et al.
Behavioral manipulations can reverse a learned fearful association in rats.

CONTENTS continued >>
A Vital Role For Interleukin-21 in the Control of a Chronic Viral Infection J. S. Yi et al. The cytokine interleukin-21 has a profound impact on virus-specific T cell responses to chronic infections in mice. 10.1126/science.1175194 Determining the Dynamics of Entanglement O. Jiménez Farias et al. The evolution of quantum mechanically entangled photon pairs can now be measured as they interact with their environment. 10.1126/science.1171544 Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction B. Lim et al. The catalytic activity of platinum is enhanced through a growth process that creates nanocrystals with high surface area. 10.1126/science.1170377 Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings C. Fraser et al. An international collaborative effort has analyzed the initial dynamics of the swine flu outbreak. 10.1126/science.1170377.

The Signal Transduction Knowledge Environment The Signal Transduction Knowledge Environment.

The Signal Transduction Knowledge Environment.
Science 324 (5929), 851-959.